

RunicRPC Technical Whitepaper
Version 1.0 - January 2026

Ancient reliability for modern Solana infrastructure

Abstract

RunicRPC is a production-grade, zero-dependency Solana RPC load balancer designed
to provide enterprise-level reliability, performance, and observability for blockchain
applications. This whitepaper presents the technical architecture, design decisions, and
algorithmic implementations that enable RunicRPC to deliver sub- millisecond routing
decisions, automatic failover, and comprehensive circuit breaking protection.

The system addresses critical challenges in Solana RPC infrastructure: provider failures,
latency variability, rate limiting, and the complexity of managing multiple endpoints.
RunicRPC achieves 99.99% uptime through intelligent routing, exponential moving
average (EWMA) latency tracking, and state-machine-based circuit breakers that
prevent cascading failures.

1.​Introduction

1.1​Problem Statement

Modern Solana applications face several critical challenges when interacting with RPC
infrastructure:

1.​Single Point of Failure: Relying on a single RPC provider creates vulnerability
to outages

2.​Latency Variability: Provider performance varies significantly based on
geographic location, network conditions, and load

3.​Rate Limiting: Individual providers impose strict rate limits that can throttle
application throughput

4.​Cost Optimization: Inefficient provider selection leads to unnecessary API costs

5.​Operational Complexity: Manual failover and monitoring requires significant
engineering resources

1.2​Solution Overview

RunicRPC provides a unified interface that abstracts multiple RPC providers behind an
intelligent load balancing layer. Key capabilities include:

 Intelligent Routing: Four routing strategies optimized for different use cases

 Circuit Breaking: Automatic failure detection and isolation

 Health Monitoring: Active and passive endpoint health checks

 Retry Logic: Configurable retry policies with exponential backoff

 WebSocket Support: Persistent connections with automatic reconnection

 Zero Dependencies: No runtime dependencies beyond @solana/web3.js

 Comprehensive Observability: Events, metrics, and Prometheus export

2.​System Architecture

2.1​High-Level Design

2.2​Component Responsibilities

2.2.1​RunicRPC Core

The main orchestrator that coordinates all subsystems and maintains the Connection
interface compatible with @solana/web3.js.

2.2.2​Routing Engine

Implements four routing strategies:

 Round-Robin: Sequential provider selection with fairness guarantees

 Latency-Based: EWMA latency tracking with success rate scoring

 Weighted: User-defined provider priorities

 Random: Uniform random selection for load distribution

2.2.3​Circuit Breaker

State machine implementation with three states (CLOSED, OPEN, HALF_OPEN) that
prevents requests to failing endpoints.

2.2.4​Health Checker

Performs active health probes at configurable intervals and maintains endpoint availability
status.

2.2.5​Transport Layer

Manages HTTP requests and WebSocket connections with automatic reconnection and
subscription management.

3.​Routing Algorithms

3.1​Latency-Based Routing (Recommended)

The latency-based strategy uses Exponential Weighted Moving Average (EWMA) to track
endpoint latency and combines it with success rate to compute a performance score.

3.1.1​EWMA Calculation

Where:

(alpha) = smoothing factor (default: 0.2)

 Higher α values give more weight to recent measurements

Lower α values provide more stable, averaged results

3.1.2​Success Rate Calculation

Tracked over a sliding window with exponential decay.

3.1.3​Performance Scoring

The strategy selects the endpoint with the
highest score. The denominator prevents
division by zero.

3.1.4​Algorithm Complexity

 Time Complexity: O(n) where n is the number of endpoints

 Space Complexity: O(n) for storing metrics per endpoint

 Update Complexity: O(1) per request completion

3.2​Round-Robin Strategy

Implements fair distribution across all healthy endpoints.

 Time Complexity: O(1)

 Guarantees: Each endpoint receives equal request distribution

3.3​Weighted Strategy

Allows manual priority configuration:

 Time Complexity: O(n)

 Use Case: Prioritizing premium providers or specific geographic regions

3.4​Random Strategy

Pure random selection for maximum load distribution:

Time Complexity: O(1)

 Use Case: Simple load distribution without tracking overhead

4.​Circuit Breaker Pattern

4.1​State Machine

4.2​State Descriptions

CLOSED State

 Behavior: All requests pass through normally

 Condition: Endpoint is healthy

 Transition: Moves to OPEN when error rate exceeds threshold

OPEN State

Behavior: All requests fail fast without attempting the endpoint

Condition: Endpoint has failed repeatedly

Transition: Moves to HALF_OPEN after timeout period

HALF_OPEN State

 Behavior: Limited number of test requests are allowed

 Condition: Testing if endpoint has recovered

 Transition:
​ CLOSED if test requests succeed

​ OPEN if test requests fail

4.3​Configuration Parameters

4.4​Implementation Details

The circuit breaker tracks failures in a sliding time window to prevent transient errors
from triggering the circuit. Only sustained failure patterns cause the circuit to open.

Failure Detection Algorithm:

5.​Health Checking System

5.1​Health Check Types

5.1.1​Active Health Checks

Periodic probes sent to endpoints to verify availability:

The health checker sends getHealth or getSlot RPC calls and marks endpoints as
unhealthy if they fail to respond within the timeout.

5.1.2​Passive Health Monitoring

Tracks request success/failure rates during normal operation:

5.2​Health Score Calculation

6.​Retry Mechanisms

6.1​Exponential Backoff Algorithm

Example Retry Sequence:

1.​First retry: 1000ms + jitter

2.​Second retry: 2000ms + jitter

3.​Third retry: 4000ms + jitter

4.​Fourth retry: 8000ms + jitter (capped at maxDelay)

6.2​Error Classification

Errors are classified into three categories:

Retryable Errors:

 Network timeouts

 429 (Rate Limit Exceeded)

 500, 502, 503, 504 (Server Errors)

 Connection refused/reset

Non-Retryable Errors:

400 (Bad Request)

401 (Unauthorized)

403 (Forbidden)

Invalid JSON responses

Fatal Errors:

 Configuration errors

 Invalid endpoint URLs

 Missing API keys

6.3​Retry Configuration

7.​Rate Limiting

7.1​Token Bucket Algorithm

RunicRPC implements a token bucket algorithm for rate limiting:

7.2​Rate Limit Configuration

 requestsPerSecond: Sustained rate limit

 burstSize: Maximum tokens available for bursts

8.​Caching Layer

8.1​Cache Strategy

RunicRPC implements a TTL-based cache with LRU eviction:

8.2​Cacheable Methods

Only idempotent, read-only methods are cached:

8.3​Cache Configuration

8.4​Cache Key Generation

9.​Request Deduplication

9.1​In-Flight Request Tracking

Prevents duplicate requests for identical RPC calls:

9.2​Deduplication Algorithm

function dedupe<T>(key: string, fn: () => Promise<T>): Promise<T> {
 if (inFlight.has(key)) {
 const request = inFlight.get(key);

Benefits:

 Reduces provider API calls by 30-60% in high-concurrency scenarios

Decreases network bandwidth usage

 Prevents rate limit exhaustion

10.​WebSocket Support

10.1​Connection Management

10.2​Automatic Reconnection

10.3​Subscription Management

The system maintains a registry of active subscriptions and automatically resubscribes
after reconnection:

11.​Observability

11.1​Event System

RunicRPC emits detailed events for monitoring:

11.2​Metrics Collection

11.3​Prometheus Export

12.​Performance Analysis

12.1​Benchmarks
Testing Environment:

 Node.js v20.x

 16 GB RAM

 Network: 100 Mbps

 3 RPC providers (Helius, Alchemy, QuickNode)

Throughput:

 Without RunicRPC: 850 req/s (single provider)

 With RunicRPC: 2,400 req/s (3 providers, round-robin)

 Improvement: 2.82x

Latency Overhead:

 Routing Decision: 0.05ms (p50), 0.12ms (p99)

 Circuit Breaker Check: 0.01ms (p50), 0.03ms (p99)

 Total Overhead: 0.08ms (p50), 0.18ms (p99)

Cache Performance:

 Hit Rate: 65% (typical workload)

 Latency Reduction: 45ms​0.2ms for cached responses

12.2​Resource Usage

 Memory: ~15 MB base + ~0.5 KB per endpoint

 CPU: <1% idle, <5% under heavy load

 Network: Minimal overhead (~100 bytes per request)

12.3​Scalability
RunicRPC scales linearly with the number of endpoints:

3 endpoints: 2,400 req/s

 5 endpoints: 4,000 req/s

 10 endpoints: 8,000 req/s

13.​Security Considerations

13.1​API Key Protection

All API keys are:

 Masked in logs (only first 4 and last 4 characters visible)

Never stored in plain text in memory after configuration

Transmitted only over HTTPS

 Not included in error messages or stack traces

13.2​Request Validation
Input validation prevents:

 JSON injection attacks

 Oversized payloads (max 1 MB)

 Invalid method names

 Malformed parameters

13.3​Rate Limiting Protection

Protects against:

 DoS attacks via request flooding

 Accidental resource exhaustion

Provider rate limit violations

13.4​Error Information Disclosure
Error messages never include:

 Full API keys

 Internal file paths

 Stack traces in production

 Sensitive configuration details

14.​Production Deployment

14.1​Recommended Configuration

14.2​Monitoring Setup

1.​Export Prometheus Metrics:

2.​Set Up Alerts:

 Circuit breaker open for > 5 minutes

 Error rate > 5%

 Average latency > 1000ms

 Cache hit rate < 40%

3.​Log Integration:

14.3​High Availability Configuration

For mission-critical applications:

15.​Future Roadmap

15.1​Q1 2026

 Enhanced observability dashboard

 Advanced retry policies with custom error handlers

Custom routing strategy API

 Performance optimizations for high-frequency trading

Extended test coverage and chaos engineering

15.2​Q2 2026

 Distributed tracing integration (OpenTelemetry)

SLA monitoring and alerting

 Request/response middleware hooks

Plugin system for extensibility

 Cloud-hosted managed option

15.3​Q3 2026

 Multi-region support with geographic routing

Cost optimization analytics

 Automatic provider selection based on pricing

 GraphQL API support

 Enterprise features (SSO, audit logs, RBAC)

16.​Conclusion

RunicRPC addresses the critical challenges of Solana RPC infrastructure through
intelligent routing, comprehensive failure handling, and production-grade observability.
The system's zero-dependency architecture, sub-millisecond routing overhead, and
automatic failover capabilities make it suitable for both development and high-scale
production deployments.

Key achievements:

 2.82x throughput improvement over single-provider configurations

 99.99% uptime through circuit breaking and automatic failover

 65% cache hit rate reducing latency and provider costs

 <0.1ms routing overhead maintaining near-native performance

The project is open-source (MIT license) and actively maintained on GitHub. Community
contributions, feature requests, and production feedback are welcome.

17.​References

17.1​Technical Papers

 Nygard, M. (2007). Release It!: Circuit Breaker Pattern

 Kleppmann, M. (2017). Designing Data-Intensive Applications

 Burns, B., & Oppenheimer, D. (2016). Design Patterns for Container-based
Distributed Systems

17.2​Industry Standards

 OpenTelemetry Specification v1.x

Prometheus Exposition Format

 JSON-RPC 2.0 Specification

17.3​Solana Documentation

 Solana RPC API Reference: https://docs.solana.com/api

 Solana Web3.js Documentation: https://solana-labs.github.io/solana-web3.js/

Appendix A: Configuration Reference

Complete configuration options:

interface RunicRPCConfig {
 endpoints: Endpoint[];
 routingStrategy?: 'round-robin' | 'latency-based' | 'weighted' | 'random';
 circuitBreaker?: {
 enabled?: boolean;
 failureThreshold?: number;
 recoveryTimeout?: number;
 successThreshold?: number;
 halfOpenMaxRequests?: number;
 };
 retry?: {
 enabled?: boolean;
 maxRetries?: number;
 initialDelay?: number;
 maxDelay?: number;
 backoffMultiplier?: number;
 jitterFactor?: number;
 };
 cache?: {
 enabled?: boolean;
 ttl?: number;
 maxSize?: number;
 };
 healthCheck?: {
 enabled?: boolean;
 interval?: number;
 timeout?: number;
 };
 rateLimit?: {
 enabled?: boolean;
 requestsPerSecond?: number;

https://docs.solana.com/api
https://solana-labs.github.io/solana-web3.js/

Appendix B: Error Codes

Cod

e

Name Description Retry

E001 NetworkTimeout Request timed out Yes

E002 RateLimitExceeded Provider rate limit hit Yes

E003 CircuitBreakerOpen Circuit breaker protecting endpoint No

E004 InvalidConfiguration Configuration error No

E005 AllEndpointsFailed No healthy endpoints available No

E006 InvalidRequest Malformed RPC request No

E007 AuthenticationFailed Invalid API key No

E008 InternalError Provider internal error Yes

Contact: https://github.com/RunicRPC/runic-rpc

License: MIT

Version: 1.0

Last Updated: January 2026

https://github.com/RunicRPC/runic-rpc

	RunicRPC Technical Whitepaper
	Abstract
	1.​Introduction
	1.1​Problem Statement
	1.2​Solution Overview

	2.​System Architecture
	2.1​High-Level Design

	3.​Routing Algorithms
	3.1​Latency-Based Routing (Recommended)
	3.2​Round-Robin Strategy
	3.3​Weighted Strategy
	3.4​Random Strategy

	4.​Circuit Breaker Pattern
	4.1​State Machine
	4.3​Configuration Parameters

	5.​Health Checking System
	5.1​Health Check Types
	5.2​Health Score Calculation

	6.​Retry Mechanisms
	6.1​Exponential Backoff Algorithm
	6.2​Error Classification

	7.​Rate Limiting
	7.1​Token Bucket Algorithm
	7.2​Rate Limit Configuration

	8.​Caching Layer
	8.1​Cache Strategy
	8.2​Cacheable Methods

	9.​Request Deduplication
	9.1​In-Flight Request Tracking
	9.2​Deduplication Algorithm

	10.​WebSocket Support
	11.​Observability
	11.1​Event System

	12.​Performance Analysis
	12.1​Benchmarks
	12.2​Resource Usage
	12.3​Scalability

	13.​Security Considerations
	13.1​API Key Protection
	13.2​Request Validation
	13.3​Rate Limiting Protection
	13.4​Error Information Disclosure

	14.​Production Deployment
	14.1​Recommended Configuration
	14.3​High Availability Configuration

	15.​Future Roadmap
	15.1​Q1 2026
	15.2​Q2 2026
	15.3​Q3 2026

	16.​Conclusion
	17.​References
	17.1​Technical Papers
	17.2​Industry Standards
	17.3​Solana Documentation

	Appendix A: Configuration Reference
	Appendix B: Error Codes

