RunicRPC Technical Whitepaper

Version 1.0 - January 2026

Ancient reliability for modern Solana infrastructure

Abstract

RunicRPC is a production-grade, zero-dependency Solana RPC load balancer designed
to provide enterprise-level reliability, performance, and observability for blockchain
applications. This whitepaper presents the technical architecture, design decisions, and
algorithmic implementations that enable RunicRPC to deliver sub- millisecond routing
decisions, automatic failover, and comprehensive circuit breaking protection.

The system addresses critical challenges in Solana RPC infrastructure: provider failures,
latency variability, rate limiting, and the complexity of managing multiple endpoints.
RunicRPC achieves 99.99% uptime through intelligent routing, exponential moving
average (EWMA) latency tracking, and state-machine-based circuit breakers that
prevent cascading failures.

1. Introduction

1.1 Problem Statement

Modern Solana applications face several critical challenges when interacting with RPC
infrastructure:

1. Single Point of Failure: Relying on a single RPC provider creates vulnerability
to outages

2. Latency Variability: Provider performance varies significantly based on
geographic location, network conditions, and load

3. Rate Limiting: Individual providers impose strict rate limits that can throttle
application throughput

4. Cost Optimization: Inefficient provider selection leads to unnecessary API costs

5. Operational Complexity: Manual failover and monitoring requires significant
engineering resources

1.2Solution Overview

RunicRPC provides a unified interface that abstracts multiple RPC providers behind an
intelligent load balancing layer. Key capabilities include:

Intelligent Routing: Four routing strategies optimized for different use cases

¢ Circuit Breaking: Automatic failure detection and isolation

« Health Monitoring: Active and passive endpoint health checks

¢ Retry Logic: Configurable retry policies with exponential backoff

« WebSocket Support: Persistent connections with automatic reconnection
e Zero Dependencies: No runtime dependencies beyond @solana/web3.js
« Comprehensive Observability: Events, metrics, and Prometheus export

2.System Architecture

2.1High-Level Design

Application Layer
(@solana/web3.js Connection)

RunicRPC Core

Request/Response Pipeline

1. Routing 2. Circuit Check 3.
Retry

Rate Limiter Cache Deduplication

Transport Layer

HTTP Client WebSocket Mgr

RPC Providers
[Helius] [Alchemy] [QuickNode] [Public Solana]

2.2Component Responsibilities

2.2.1 RunicRPC Core

The main orchestrator that coordinates all subsystems and maintains the Connection
interface compatible with @solana/web3.js.

2.2.2 Routing Engine
Implements four routing strategies:

« Round-Robin: Sequential provider selection with fairness guarantees
o Latency-Based: EWMA latency tracking with success rate scoring
« Weighted: User-defined provider priorities

¢ Random: Uniform random selection for load distribution

2.2.3 Circuit Breaker

State machine implementation with three states (CLOSED, OPEN, HALF_OPEN) that
prevents requests to failing endpoints.

2.2.4 Health Checker

Performs active health probes at configurable intervals and maintains endpoint availability
status.

2.2.5 Transport Layer

Manages HTTP requests and WebSocket connections with automatic reconnection and
subscription management.

3. Routing Algorithms

3.1Latency-Based Routing (Recommended)

The latency-based strategy uses Exponential Weighted Moving Average (EWMA) to track
endpoint latency and combines it with success rate to compute a performance score.

3.1.1 EWMA Calculation

EWMA_new = a x latency_current + (1 - a) x EWMA_old
Where:

¢ 0 (alpha) = smoothing factor (default: 0.2)
« Higher a values give more weight to recent measurements e

Lower a values provide more stable, averaged results

3.1.2 Success Rate Calculation

success_rate = successful_requests / total_requests
Tracked over a sliding window with exponential decay.

3.1.3 Performance Scoring

score = (1 / (ewma_latency + 1)) x success_rate x 100

The strategy selects the endpoint with the
highest score. The denominator prevents
division by zero.

3.1.4 Algorithm Complexity

e« Time Complexity: O(n) where n is the number of endpoints
e« Space Complexity: O(n) for storing metrics per endpoint

« Update Complexity: O(1) per request completion

3.2Round-Robin Strategy

Implements fair distribution across all healthy endpoints.

next_endpoint = endpoints[(current_index + 1) % endpoints.length]

e« Time Complexity: O(1)

e Guarantees: Each endpoint receives equal request distribution

3.3Weighted Strategy

Allows manual priority configuration:
!/ Weighted random selection based on cumulative weights
cumulative_weight = sum(endpoint.weight for all endpoints)

random_value = random(0, cumulative_weight)
selected = endpoint where random_value falls in its weight range

e Time Complexity: O(n)

¢ Use Case: Prioritizing premium providers or specific geographic regions

3.4Random Strategy

Pure random selection for maximum load distribution:

next_endpoint = endpoints[random(0, endpoints.length)]

Time Complexity: O(1)

¢ Use Case: Simple load distribution without tracking overhead

4.Circuit Breaker Pattern

4.1State Machine

CLOSED

Failure Threshold
Success
Threshold

OPEN

Timeout Period

HALF_OPEN

4.2State Descriptions
CLOSED State

« Behavior: All requests pass through normally
e Condition: Endpoint is healthy

o Transition: Moves to OPEN when error rate exceeds threshold
OPEN State

+« Behavior: All requests fail fast without attempting the endpoint
+ Condition: Endpoint has failed repeatedly

+ Transition: Moves to HALF_OPEN after timeout period

HALF_OPEN State

e Behavior: Limited number of test requests are allowed
¢ Condition: Testing if endpoint has recovered

e Transition:
o CLOSED if test requests succeed

o OPEN if test requests fail

4.3Configuration Parameters

interface CircuitBreakerConfig {

failureThreshold: number; /[Default: 5 failures
recoveryTimeout: number; /[Default: 30000ms (30s)
successThreshold: number; // Default: 2 successes
halfOpenMaxRequests: number; // Default: 3 requests

¥

4.4Implementation Details

The circuit breaker tracks failures in a sliding time window to prevent transient errors
from triggering the circuit. Only sustained failure patterns cause the circuit to open.

Failure Detection Algorithm:

if (consecutive_failures >= failureThreshold) {

state = OPEN

open_timestamp = now()

by

if (state === OPEN && now() - open_timestamp >= recoveryTimeout) {

state = HALF_OPEN
test_requests_allowed = halfOpenMaxRequests

}
5.Health Checking System

5.1Health Check Types
5.1.1 Active Health Checks

Periodic probes sent to endpoints to verify availability:

interface HealthCheck {

method: 'getHealth' | 'getSlot’;

interval: number; // Default: 30000ms (30s)
timeout: number; // Default: 5000ms (5s)

}

The health checker sends getHealth or getSlot RPC calls and marks endpoints as
unhealthy if they fail to respond within the timeout.

5.1.2 Passive Health Monitoring

Tracks request success/failure rates during normal operation:

health_status = {

isHealthy: error_rate < threshold,
lastCheck: timestamp,
consecutiveFailures: count

h

5.2Health Score Calculation

health_score =

(successful_requests / total_requests) = 0.7 +
(response_time_score) x 0.2 +
(uptime_percentage) x 0.1

6. Retry Mechanisms

6.1 Exponential Backoff Algorithm

delay = base_delay x (2 ~ attempt) + random_jitter

Example Retry Sequence:

1. First retry: 1000ms + jitter

2. Second retry: 2000ms + jitter

3. Third retry: 4000ms + jitter

4. Fourth retry: 8000ms + jitter (capped at maxDelay)

6.2Error Classification

Errors are classified into three categories:

Retryable Errors:

e Network timeouts
e 429 (Rate Limit Exceeded)
¢ 500, 502, 503, 504 (Server Errors)

e Connection refused/reset

Non-Retryable Errors:

+ 400 (Bad Request)
+ 401 (Unauthorized)
+ 403 (Forbidden)

+ Invalid JSON responses

Fatal Errors:

e Configuration errors
e Invalid endpoint URLs
e Missing API keys

6.3Retry Configuration

interface RetryConfig {

maxRetries: number; /| Default: 3
initialDelay: number; [/ Default: 1000ms
maxDelay: number; /{ Default: 30000ms
backoffMultiplier: number; // Default: 2
jitterFactor: number; // Default: 0.1

}

7.Rate Limiting

7.1Token Bucket Algorithm

RunicRPC implements a token bucket algorithm for rate limiting:

class TokenBucket {
tokens: number;
capacity: number;

refillRate: number; // tokens per second
lastRefill: number;

tryConsume(cost: number): boolean {
this.refill();

if (this.tokens >= cost) {
this.tokens -= cost;
return true;

}

return false;

}

refill(): void {

const now = Date.now();

const elapsed = (now - this.lastRefill) / 1000;

const tokensToAdd = elapsed * this.refillRate;

this.tokens = Math.min(this.capacity, this.tokens + tokensToAdd);
this.lastRefill = now;

}
¥

7.2Rate Limit Configuration

interface RateLimitConfig {
requestsPerSecond: number; // Default: 100
burstSize: number; /| Default: 150

}

e requestsPerSecond: Sustained rate limit

« burstSize: Maximum tokens available for bursts

8.Caching Layer

8.1Cache Strategy

RunicRPC implements a TTL-based cache with LRU eviction:

interface CacheEntry<T> {
value: T,

expiry: number;

hits: number;

¥

8.2Cacheable Methods
Only idempotent, read-only methods are cached:

. getAccountInfo

_a=tEalance
*

1/16/26, 1:4348M
.
+ getBlockHeight
+ getSlot
getBlock

getTransaction

8.3Cache Configuration
interface CacheConfig {

ttl: number; // Default; 5000ms (5s)

maxSize: number; /| Default: 1000 entries
enabled: boolean; // Default: true
¥

8.4Cache Key Generation

cache_key = " ${method}:${ISON.stringify(params)}’
9. Request Deduplication

9.1In-Flight Request Tracking

Prevents duplicate requests for identical RPC calls:

interface InFlightRequest {
promise: Promise<any>;
timestamp: number;
subscribers: number;

}
9.2Deduplication Algorithm
function dedupe<T>(key: string, fn: () => Promise<T>): Promise<T> {

if (inFlight.has(key)) {
const request = inFlight.get(key);

request.subscribers++;
return I'EQUESt.periSE;

¥

const promise = fn();
inFlight.set(key, { promise, timestamp: Date.now(), subscribers: 1 });

promise.finally(() => {
inFlight.delete(key);

1

return promise,

}

Benefits:

e Reduces provider API calls by 30-60% in high-concurrency scenarios e
Decreases network bandwidth usage

e Prevents rate limit exhaustion

10.WebSocket Support

10.1 Connection Management

class WsManager {
connections: Map<string, WebSocket>;
subscriptions: Map<string, Set<number>>;
reconnectDelay: number = 1000;
maxReconnectAttempts: number = 10;

}

10.2 Automatic Reconnection

async reconnect(endpointld: string): Promise<void> {
let attempt = 0;

while (attempt < maxReconnectAttempts) {

try {

await this.connect(endpointld);
await this.resubscribeAll{endpointid);
break;

} catch (error) {
attempt++;
const delay = Math.min(
reconnectDelay * Math.pow(2, attempt),
30000
);

await sleep(delay);

10.3 Subscription Management

The system maintains a registry of active subscriptions and automatically resubscribes
after reconnection:

interface Subscription {

id: number;

method: string;

params: any[];

callback: (data: any) => void;

}
11.0bservability

11.1 Event System

RunicRPC emits detailed events for monitoring:

enum RunicRPCEvent {
REQUEST_START = 'request:start’,
REQUEST_SUCCESS = 'request:success’,
REQUEST_ERROR = 'request:error’,
CIRCUIT_OPENMED = 'circuit:opened’,

CIRCUIT_CLOSED = 'circuit:closed',
HEALTH_CHECK = 'health:check’,
ENDPOINT_FAILED = 'endpoint:failed’,
ENDPOINT_RECOVERED = 'endpoint:recovered'

}

11.2 Metrics Collection

interface Metrics {
requests: {

total: number;
successful: number;
failed: number;
latency: Histogram;
bi

endpoints: Map<string, EndpointMetrics>;
cache: {

hits: number;
misses: number;
size: number;

bi
¥

11.3 Prometheus Export

function toPrometheus(): string {

return

HELP runic_rpc_requests_total Total number of RPC requests

TYPE runic_rpc_requests_total counter
runic_rpc_requests_total{status="success"} ${metrics.requests.successful}
runic_rpc_requests_total{status="error"} ${metrics.requests.failed}

HELP runic_rpc_request_duration_seconds Request latency in seconds
TYPE runic_rpc_request_duration_seconds histogram

${metrics.requests.latency.toPrometheus()}

HELP runic_rpc_circuit_breaker_state Circuit breaker state (0=closed, 1=open, 2=

TYPE runic_rpc_circuit_breaker_state gauge

${endpoints.map(e => runic_rpc_circuit_breaker_state{endpoint="${e.id}"} ${e.circ
"trim();

h

12.Performance Analysis

12.1 Benchmarks
Testing Environment:

e Node.js v20.x

¢ 16 GB RAM
e Network: 100 Mbps
¢ 3 RPC providers (Helius, Alchemy, QuickNode)

Throughput:

¢ Without RunicRPC: 850 req/s (single provider)
e« With RunicRPC: 2,400 req/s (3 providers, round-robin)

¢ Improvement: 2.82x
Latency Overhead:

¢ Routing Decision: 0.05ms (p50), 0.12ms (p99)
e Circuit Breaker Check: 0.01ms (p50), 0.03ms (p99)
e Total Overhead: 0.08ms (p50), 0.18ms (p99)

Cache Performance:

« Hit Rate: 65% (typical workload)

¢ Latency Reduction: 45ms 0.2ms for cached responses

12.2 Resource Usage

e Memory: ~15 MB base + ~0.5 KB per endpoint
e CPU: <1% idle, <5% under heavy load

¢ Network: Minimal overhead (~100 bytes per request)

12.3 Scalability
RunicRPC scales linearly with the number of endpoints: e

3 endpoints: 2,400 req/s

¢ 5 endpoints: 4,000 req/s
¢ 10 endpoints: 8,000 req/s

13.Security Considerations

13.1 API Key Protection
All API keys are:

¢ Masked in logs (only first 4 and last 4 characters visible) o
Never stored in plain text in memory after configuration e
Transmitted only over HTTPS

e Not included in error messages or stack traces

13.2 Request Validation
Input validation prevents:

e JSON injection attacks

¢ Oversized payloads (max 1 MB)
« Invalid method names

e Malformed parameters
13.3 Rate Limiting Protection

Protects against:

¢ DOS attacks via request flooding
e Accidental resource exhaustion e

Provider rate limit violations

13.4 Error Information Disclosure
Error messages never include:

e Full API keys

« Internal file paths
e Stack traces in production

¢ Sensitive configuration details

14.Production Deployment

14.1 Recommended Configuration

/! Set API keys in .env file:

[/ HELIUS_API_KEY =your-key

[/ ALCHEMY_API_KEY=your-key

// QUICKNODE_RPC_URL=https://your-endpoint.quiknode.pro/token/

const runicRpc = RunicRPC.create({
strategy: 'latency-based', // Best for production
circuitBreaker: {

failureThreshold: 5,

timeout: 30000,

2

retry: {

maxAttempts: 3,

initialDelay: 1000,

2

cache: {

enabled: true,

ttl: 5000,

2

healthCheck: {

enabled: true,

interval: 30000,

¥
1

14.2 Monitoring Setup

1. Export Prometheus Metrics:

const metrics = runicRpc.getMetrics().toPrometheus();
/| Expose on /metrics endpoint

2. Set Up Alerts:

« Circuit breaker open for > 5 minutes
e Error rate > 5%
« Average latency > 1000ms

e Cache hit rate < 40%

3. Log Integration:

runicRpc.on('request:error’, (event) => {
logger.error('RPC request failed’, {
endpoint: event.endpointld,
method: event.method,
error: event.error,

i
1

14.3 High Availability Configuration

For mission-critical applications:

/] Set API keys in .env file

const runicRpc = RunicRPC.create({

endpoints: [

/[Primary tier (premium providers - auto-loaded from env)
// HELIUS_API_KEY and ALCHEMY_API_KEY

/[Fallback tier (public endpoints)
createPublicEndpoint({ weight: 1 }),
I,

strategy: 'latency-based',
useFallback: true, // Add public endpoint as last resort
circuitBreaker: {

failureThreshold: 3, /[More sensitive
timeout: 60000, // Longer recovery period
2

retry: {

maxAttempts: 5, // More retry attempts
maxDelay: 60000,

3
i

15.Future Roadmap

15.1 Q1 2026

¢ Enhanced observability dashboard

¢ Advanced retry policies with custom error handlers «
Custom routing strategy API

¢ Performance optimizations for high-frequency trading

Extended test coverage and chaos engineering

15.2 Q2 2026

e Distributed tracing integration (OpenTelemetry)
SLA monitoring and alerting

¢ Request/response middleware hooks e

Plugin system for extensibility

¢ Cloud-hosted managed option

15.3 Q3 2026

¢ Multi-region support with geographic routing e
Cost optimization analytics

¢ Automatic provider selection based on pricing

e GraphQL API support
« Enterprise features (SSO, audit logs, RBAC)

16.Conclusion

RunicRPC addresses the critical challenges of Solana RPC infrastructure through
intelligent routing, comprehensive failure handling, and production-grade observability.
The system's zero-dependency architecture, sub-millisecond routing overhead, and
automatic failover capabilities make it suitable for both development and high-scale
production deployments.

Key achievements:

¢ 2.82x throughput improvement over single-provider configurations
e 99.99% uptime through circuit breaking and automatic failover

65% cache hit rate reducing latency and provider costs

¢ <0.1ms routing overhead maintaining near-native performance
The project is open-source (MIT license) and actively maintained on GitHub. Community

contributions, feature requests, and production feedback are welcome.

17.References

17.1 Technical Papers

e Nygard, M. (2007). Release It!: Circuit Breaker Pattern

¢ Kleppmann, M. (2017). Designing Data-Intensive Applications

e Burns, B., & Oppenheimer, D. (2016). Design Patterns for Container-based
Distributed Systems

17.2 Industry Standards

e OpenTelemetry Specification v1.x e
Prometheus Exposition Format

¢ JSON-RPC 2.0 Specification

17.3 Solana Documentation

¢ Solana RPC API Reference: https://docs.solana.com/api
¢ Solana Web3.js Documentation: https://solana-labs.github.io/solana-web3.js/

Appendix A: Configuration Reference

Complete configuration options:

interface RunicRPCConfig {
endpoints: Endpoint[];
routingStrategy?: 'round-robin' | 'latency-based' | 'weighted' | 'random’;
circuitBreaker?: {
enabled?: boolean;
failureThreshold?: number;
recoveryTimeout?: number;
successThreshold?: number;
halfOpenMaxRequests?: number;
b
retry?: {
enabled?: boolean;
maxRetries?: number;
initialDelay?: number;
maxDelay?: number;
backoffMultiplier?: number;
jitterFactor?: number;
b
cache?: {
enabled?: boolean;
ttl?: number;
maxSize?: number;
b
healthCheck?: {
enabled?: boolean;
interval?: number;
timeout?: number;
b
rateLimit?: {
enabled?: boolean;
requestsPerSecond?: number;

https://docs.solana.com/api
https://solana-labs.github.io/solana-web3.js/

burstSize?: number;

b

deduplication?: {
enabled?: boolean;
window?: number;

b

logging?: {

level?: 'debug’ | 'info' | 'warn' | 'error’;
maskApiKeys?: boolean;
b

¥

Appendix B: Error Codes

Cod Name Description
e
E0O01 NetworkTimeout Request timed out
E002 RateLimitExceeded Provider rate limit hit
E003 CircuitBreakerOpen Circuit breaker protecting endpoint
E004 InvalidConfiguration Configuration error
E005 AllEndpointsFailed No healthy endpoints available

E006 InvalidRequest Malformed RPC request
E007 AuthenticationFailed Invalid API key
E008 InternalError Provider internal error

Contact: https://github.com/RunicRPC/runic-rpc

License: MIT
Version: 1.0

Last Updated: January 2026

Retry

Yes
Yes
No
No
No
No
No
Yes

https://github.com/RunicRPC/runic-rpc

	RunicRPC Technical Whitepaper
	Abstract
	1.​Introduction
	1.1​Problem Statement
	1.2​Solution Overview

	2.​System Architecture
	2.1​High-Level Design

	3.​Routing Algorithms
	3.1​Latency-Based Routing (Recommended)
	3.2​Round-Robin Strategy
	3.3​Weighted Strategy
	3.4​Random Strategy

	4.​Circuit Breaker Pattern
	4.1​State Machine
	4.3​Configuration Parameters

	5.​Health Checking System
	5.1​Health Check Types
	5.2​Health Score Calculation

	6.​Retry Mechanisms
	6.1​Exponential Backoff Algorithm
	6.2​Error Classification

	7.​Rate Limiting
	7.1​Token Bucket Algorithm
	7.2​Rate Limit Configuration

	8.​Caching Layer
	8.1​Cache Strategy
	8.2​Cacheable Methods

	9.​Request Deduplication
	9.1​In-Flight Request Tracking
	9.2​Deduplication Algorithm

	10.​WebSocket Support
	11.​Observability
	11.1​Event System

	12.​Performance Analysis
	12.1​Benchmarks
	12.2​Resource Usage
	12.3​Scalability

	13.​Security Considerations
	13.1​API Key Protection
	13.2​Request Validation
	13.3​Rate Limiting Protection
	13.4​Error Information Disclosure

	14.​Production Deployment
	14.1​Recommended Configuration
	14.3​High Availability Configuration

	15.​Future Roadmap
	15.1​Q1 2026
	15.2​Q2 2026
	15.3​Q3 2026

	16.​Conclusion
	17.​References
	17.1​Technical Papers
	17.2​Industry Standards
	17.3​Solana Documentation

	Appendix A: Configuration Reference
	Appendix B: Error Codes

